Changes in cytoskeletal gene expression affect the composition of regenerating axonal sprouts elaborated by dorsal root ganglion neurons in vivo.

نویسندگان

  • M M Oblinger
  • R A Szumlas
  • J Wong
  • F J Liuzzi
چکیده

The effect of a change in neurofilament (NF) and tubulin gene expression on the elongation of axonal sprouts by adult rat sensory neurons was examined. Distal sciatic nerve crush axotomy was used to initiate changes in cytoskeletal gene expression in lumbar dorsal root ganglion (DRG) neurons. In situ hybridization of DRG neurons with 35S-labeled cDNA probes revealed a significant reduction in the level of mRNAs for the low-molecular weight-NF protein and a significant increase in the level of beta tubulin mRNAs by 2 weeks after axotomy. A novel modification of the axonal transport paradigm was used to examine the biochemical composition of the regenerating axons formed by primed and unprimed DRG neurons. Primed neurons (which had sustained a crush axotomy of the distal sciatic nerve 2 weeks earlier) and unprimed (normal) neurons were labeled by microinjection of 35S-methionine and then stimulated to regenerate axons by a crush located very close to the DRG. In this paradigm, axonal sprouts that formed after the proximal crush axotomy incorporated radiolabeled, slow axonally transported proteins as they elongated. Fluorographs of SDS-PAGE revealed that the regenerating axonal sprouts of primed DRG cells incorporated and conveyed significantly less labeled NF protein than did the regenerating axons of unprimed DRG neurons. Electron microscopy revealed that the regenerating axonal sprouts of primed DRG cells contained numerous microtubules but very few identifiable NFs compared with the regenerating sprouts of unprimed DRG neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Axotomy-induced changes in the expression of a type III neuronal intermediate filament gene.

The effect of axotomy on the expression of the 57 kDa neuronal intermediate filament (IF) protein in adult rat dorsal root ganglion (DRG) neurons was examined. This IF protein is known to have an exclusively neuronal localization but is considerably more limited in its distribution in the nervous system than the neurofilament (NF) triplet proteins. The 57 kDa neuronal IF protein is similar (and...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress

Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...

متن کامل

The Effect of Swimming Training on Ganglionic Cells Population and Class III Beta-Tubulin Protein in Dorsal Root Ganglion of Wistar Male Rats: An Experimental Study

  Background and Objectives: β-tubulin protein is the protein that has a key role in plasticity and neurogenesis in the mature neurons. On the other hand, endurance training is effective in neuron life and lifespan. The present study aimed to investigate the effect of 20 days swimming training on class III β-tubulin and the number of ganglion cells in DRG of Wistar male rats. Materials and Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 8  شماره 

صفحات  -

تاریخ انتشار 1989